
NOTATION 

OZ, direction of the station axis; OX, OY, directions perpendicular to the station 
axis; g, acceleration vector; g, absolute value of the acceleration vector; ~, angular velo- 
city of rotation of the acceleration vector; m*, scaling angular velocity; g*, scaling ab- 
solute value of the acceleration vector; Gr, Grashof number, Gr = K*$tATR3/v2; Pr, Prandtl 
number, Pr = v/a; v, kinematic viscosity coefficient; a, coefficient of thermal diffusivity; 
T, temperature; ~th, thermal expansion coefficient; R, characteristic size, radius of the 
vessel; ~u, relative angular velocity; Fo, dimensionless time; ~m, maximal value of the 
stream function; ~n, relative flow intensity; Grc, concentration Grashof number; C, concen- 
tration. 
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INFLUENCE OF THE ENERGY SUPPLY ON THE CONDITIONS OF 

SUPERSONIC FLOW AROUND AN OBSTACLE 

V. Yu. Borzov, I. V. Rybka, and A. S. Yur'ev UDC 533.6.011.51 

Supersonic flow around an obstacle is calculated in the case of axial nonuni- 
formity of the gasdynamic parameters due to energy supply to the gas in a re- 
gion upstream from the obstacle. The influence of the distance between the 
energy-supply region and the obstacle and their relative transverse dimensions 
on the flow conditions and the lateral-drag coefficient is analyzed. 

In practice, it is often necessary to deal with nonuniform supersonic gas flow around 
a body. Such nonuniformity of the incoming flux may be due to various factors, for example, 
the formation of a wake behind a body positioned upstream at the pivot of a disk attachment 
[i], energy and mass supply [2], etc. The character of the nonuniformity depends to a con- 
siderable extent on the factors which cause it, and has a significant influence on the flow 
conditions around an obstacle and the corresponding force and energy interaction. 

The flow of nonuniform supersonic flow around an obstacle has recently been studied 
for the case of energy supply to a local region of the flow [3, 4]. In [3], it was shown 
that, if a cylindrical body is downstream from a thin thermal layer with reduced density 
at its axis, approximately threefold reduction in lateral drag is possible, and it was sug- 
gested that nonsteady flow conditions are possible here, in principle. The model proposed 
for the nonuniformity of the incoming flow permits the study of the mechanism of flow re- 
structuring in the shock layer. In practice, however, it is difficult to create a thin 
thermal layer with constant parameters over its length in a gas, by any known means, since 
notonly radial but also longitudinal nonuniformity of the gasdynamic parameters appears 
in real conditions. This corresponds to the problem in [4], where supersonic flow around 
a sphere was calculated in the case of energy input to the flow, with variation in the rate 
of energy supply and in the distance between the sphere and the region of energy supply. 
Once again, considerable reduction in the lateral-drag coefficient was found in the calcula- 
tions. 
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Fig. i. Gas flow in shock layer with various distances X of 
the end (R = 2.0) from the energy-supply region: a) X = 4.1; 
b) 5.8; c) 8.3; d) 9.1; e) 11.9; f) 13.5. 

Fig. 2. Distribution of pressure coefficient P over the 
radius of the end (R = 2.0) at different distances from the 
energy-supply region: i) X = 3.2; 2) 4.1; 3) 5.8; 4) 8.3; 
5) 9.1; 6) 10.2; 7) 11.9; 8) 13.5. 

Fig. 3. Dependence of the_lateral-drag coefficient of the 
obstacle Cxa on X (a) when R = 2.0 (i), 1.5 (2), and 1.0 (3) 
and on R when X = 9.1 (b). 

Thus, by appropriate choice of the energy supplied to it, an incoming flux may be de- 
liberately restructured so as to improve the flow around an obstacle (for example, to reduce 
the lateral resistance of bodies in a gas flow). This possibility is of practical interest, 
but its realization requires more detailed study of the factors influencing the restructuring 
of the incoming flow and the flow conditions around the obstacle: primarily, the shape of 

179 



the obstacle, the relative position of the energy-supply region and the obstacle, and the 
ratio of their geometric dimensions. 

The present work outlines the results of numerical modeling of an axisymmetric super- 
sonic gas flow around a cylindrical obstacle (radius R) with a plane front end, in the case 
of strong axial nonuniformity of the flow due to energy supply in a cylindrical region (radi- 
us r~) which is located upstream on the axis. A cylindrical obstacle is chosen so as to 
reveal more clearly the effects due to nonuniformity of the gasdynamic parameters of the 
flow. 

The influence of the distance from the obstacle to the energy-supply region and the 
ratio of their transverse dimensions on the shockwave structures formed and the lateral-drag 
coefficient of the obstacle is investigated, in a two-stage calculation. In the first stage, 
the field of gasdynamic parameters is determined in the case of energy supply to an unper- 
turbed supersonic flow with M~ = i0 in a local region. Note that, with a specific power 
supply Q = 3"10 9 W/kg, the flow is Supersonic in the whole calculation region. This means 
that, in investigating the influence of the energy supply on the flow around the obstacle, 
a standard rectangular calculation region (i0 x 6) with a fixed position of the obstacle 
may be used; to take account of the change in the distance between the obstacle and the 
energy-supply region, the distribution of gasdynamic parameters obtained in the first stage 
for this distance is specified at the left-hand boundary of the calculation region. This 
approach permits considerable savings in machine time. 

The gas motion in the calculation region is described by Euler and energy equations 
in divergent form; terms taking account of heat conduction are omitted in the energy equa- 
tion. The correctness of this assumption requires further investigation. 

All the parameters are reduced to dimensionless form as follows: The pressure, density, 
internal energy, velocities, and linear dimensions are referred to p~U~ 2, p~, U~ 2, U~, and 
rl, respectively. At the upper and right-hand boundaries of the calculation region, so-called 
soft boundary conditions are specified, i.e., the first derivatives of the corresponding 
parameters are taken to be zero; At the surface of the body and the symmetry axis, impenetra- 
bility conditions are adopted. The problem is solved in a formulation with constant boun- 
dary conditions by the Godunov method [5]. The position of the plane end relative to the 
end of the energy-supply region X = x/rl varies from 4.1 to 13.9. The radius of the obstacle 
varies in the range R = R/r~ = 1.5-3.5 with a step of 0.5. The energy-supply region is 
of dimensions 1.6 • 1 in the axial and radial directions. The specific power supply remains 
constant in all the calculations. 

In analyzing the results of numerical modeling, it muw be remembered that the flux 
is divergent up to X = i0, and converges to the axis when X > 10.5. The form of the leading 
shock wave and the eddy structures which form is shown in Fig. 1 as a function of the dis- 
tance X between the plane end (R = 2.0) and the energy-supply region (the pressure discon- 
tinuity behind the leading shockwave at the periphery of the end is not shown in Fig. I). 
A toroidal eddy and an isolated shock wave, the geometry of which depends strongly on the 
relative position of the obstacle and the energy-supply region, is formed in front of the 
plane end in all cases up to X = 14. 

As is evident from Figs. la, b, the usual flow patterns and form of the leading shock 
wave are not realized at all for small distances from the plane end (X = 4.1, 5.8), when 
the nonuniformity of the incoming flow is localized within the transverse dimension of the 
obstacle; the eddy is shifted toward the edge of the end, and is small (Reddy ~ 0.3R). The 
reasons for the appearance of this flow structure are evident on scrutinizing Fig. 2, which 
shows the distribution of the pressure coefficient over the radius of the plane end. In 
fact, if X = 4.1 (Fig. la), the pressure coefficients at the Critical point and at the con- 
necting line are approximately the same, which facilitates the displacement of the return 
flow toward the edge of the end. With further increase in X, the pressure difference in- 
creases on account of the faster pressure reduction at the critical point due to the disper- 
sion of the incoming flow; this is associated with movement of the eddy toward the symmetry 
axis, increase in its size, and the establishment of flow patterns similar to those in [3, 
4] (Fig. Ic-e). In addition, the formation of a l-type leading discontinuity close to the 
symmetry axis (Fig. if) is possible due to the reversal of the incoming flow converging 
on the axis at sufficiently large distances from the energy-supply region (X = 13.5). With 
further increase in X, the eddy decreases in Size and disappears; the flow structure ap- 
proaches that correspondingto uniform gas flow. In accordance with change in flow structure 
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Fig. 4. Distribution of the gasdynamic 
parameters in the flow at a distance 
X = 9.1 from the energy-supply region. 

in the shock layer, the lateral-drag coefficient of the obstacle Cx~ and the distance of 
the leading shock wave from the end change with increase in X (Fig. 3a). The greatest reduc- 
tion in Cxa (by a factor of approximately 4.3)_corresponds to the case of maximum distance 
of the leading shock wave from the plane end (R = 2; X = 9.1). At larger X, the lateral-drag 
coefficient increases slightly, tending to a constant value which corresponds to M for the 
flow core, the uniformity of which increases with increase in X. 

The influence of the transverse directions of the obstacle on its lateral-drag coeffi- 
cient may be seen in Fig. 3b, analysis of which yields the far-from-trivial conclusion that 
the lateral-drag coefficient of the plane end decreases by a factor of approximately 2.4 
with increase in the radius R at constant X = 9.1, reaching its smallest value in the given 
range of R (2 ~ R ~ 3.5) at R = 3.5 (continuous curve in Fig. 3b). However, when R e 2.5, 
steady flow is not established, as indicated by the periodic oscillation of Cx~. The oscil- 
lation amplitude of Cx= increases with increase in transverse dimensions of the obstacle 
R (dashed curves in Fig. 3b; the lower curve corresponds to the minimum value of Cx~ and 
the upper curve to the maximum value). That such flow conditions may exist was suggested 
in [3]~ 

Why nonsteady conditions appear may be understood if the radial distribution of the 
gasdynamic parameters in the flow arriving at the obstacle when X = 9.1 is analyzed (Fig. 
4). On the right-hand side of Fig. 4, the outer edges of plane ends of radii R = 2, 2.5, 
3.0, and 3.5 are shown to scale. It is evident from Fig. 4 that the maximum density, pres- 
sure, and transverse velocity correspond to the edge of the plane end with R = 3.5. Con- 
siderable increase in pressure in the peripheral part of the end leads to the appearance 
of a powerful return flow similar to that in Fig. Id, but of much greater extent. The lead- 
ing shock wave then moves a distance 2.4R away from the end, the slope of its lateral 
branches decreases, and the return flow becomes more intense. This leads to additional 
increase in the transverse velocity component; as a result, some of the high-pressure, high- 
density gas moves past the plane end, and the pressure in its peripheral region decreases, 
with consequent decrease in the intensity of the return flow and its extent along the axis. 
The leading shock wave moves closer to the obstacle and its slope increases, resulting in an 
increase in pressure at the outer edge of the end surface; then the process repeats itself. 

This investigation shows that, in supersonic flow around a cylindrical obstacle with 
a plane front end, in the case of high axial nonuniformity of the gasdynamic parameters 
as a result of energy supply in a local region, three types of shockwave structure may exist, 
with steady and periodic flow conditions, and there is significant reduction in the lateral- 
drag coefficient; these characteristics are determined by the mutual position of the ob- 
stacle and the energy-supply region and by their relative dimensions. 

NOTATION 

R, obstacle radius; rl, radius of energy-supply region; M, Mach number; Q' specific 
power supply;_p, density; U, V, axial and radial components of the flow velocity; x, r, 
coordinates; X, relative distance of the obstacle from the end of the energy-supply region; 
R, relative radius of obstacle; Reddy, relative radius of eddy; Cxa, lateral-drag coeffi- 
cient of obstacle; P, pressure coefficient. Indices: =, parameters of unperturbed flow. 
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INVERSE CASCADE IN FRACTAL TURBULENCE (VORTEX-FRACTONS) 

A. G. Bershadskii* UDC 532.517.4 

A direct connection between the properties of the inverse cascade of energy 
and the fractal properties of turbulence is established. 

Introduction. The transport of energy from small-scale to large-scale motions attrac- 
ted attention long ago. A large body of literature is devoted to this topic (see, for exam- 
ple, [1-6]), and it can be asserted that its existence has been reliably established by 
experiment. It is considered that the inverse cascade is a characteristic feature of large- 
scale processes in quasi-two-dimensional turbulence. However, the physical nature of the 
inverse energy cascade is still not well understood, and there is a great deal of experiment- 
al material, obviously connected with the inverse cascade, which needs interpretation. Evi- 
dently, one of the fundamental points that is unclear here is the connection between the 
inverse cascade and the fractal character of turbulence. The difficulty in the theoretical 
analysis of this problem is due to the specific fractal structure in two-dimensional turbu- 
lence (for example, see [5, 7]). Below it will be shown that with the suppression of the 
fractal character of the motion, the inverse energy cascade in two-dimensional turbulence 
is also suppressed at large scales. That is to say, the very existence of the cascade turns 
out to be caused by the fractal character of the turbulence. 

The carriers of the inverse cascade are the large-scale, localized fractal formations, 
closely linked to the fracton dimension of the fractal processes [8]. Evidently, the char- 
acteristic quasi-horizontal vortices with structures on the scale of -i-i00 km, which have 
been observed in the ocean [9], are such vortex-fractons (see below). In magnetohydrodyna- 
mic turbulence, it is still not possible to visualize vortex-fractons. However, the spec- 
tral and integrated characteristics of the processes, for which these vortices are respon- 
sible, have been measured in numerous experiments. Below, a comparison with these data 
will be made. This comparison indicates that for both the oceanic turbulence and the MHD 
turbulence, the inverse energy transfer to large scales is linked to processes of a fracton 
nature. A connection is established between the fracton dimension of the turbulence Df [8] 
in the two-dimensional case and the low-frequency scaling spectrum of the kinetic energy 
of pulsation 

E (~) --~ ~~ -a. ( 1 ) 

For the universal (approximate) value Df = 4/3 [8] (Alexander-Orbach), relation (i) gives 

E(o) ,--., o-~/s,  (2 )  

*Deceased. 
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